The Effects of Ocean Temperature on Ecklonia Cava Growth and Its Implications

Thousand Oaks High School

AP Research STEM

Introduction

Ecklonia Cava

- Edible brown algae
- Found around the coasts of Japan and Korea

Figure 1. Ecklonia cava (E. cava)

Health Benefits

- Decrease blood pressure
- Lower glucose levels
- Lipase inhibitory activity
- Increase hair growth

Figure 3. Bottle of Ecklonia cava extract

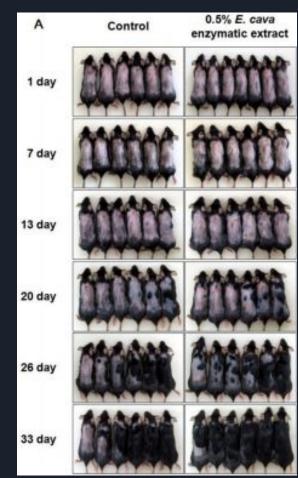


Figure 4. Experiments done on mice to determine effects of *E. cava* on hair growth

Harmful Environmental Factors

- Increasing ocean temperatures
- Grazing herbivorous fish
- Kuroshio Current

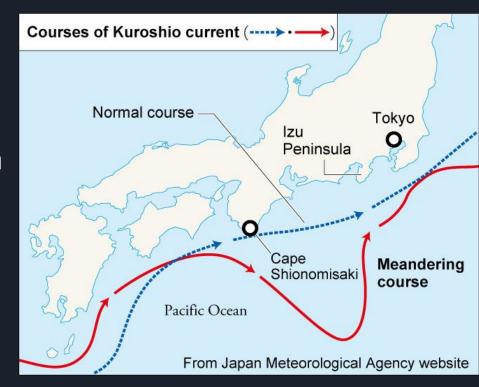


Figure 2. Course of Kuroshio current

Problem

- Coastal ecosystem will unbalance
- Abalone farmers lose income
- Potential health benefits disappear

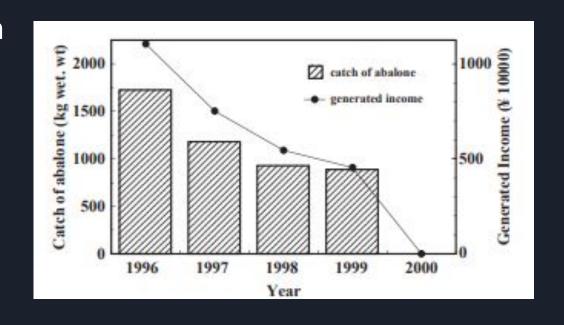


Figure 5. Abalone catches and generated income at Tei from 1996 to 2000

Current solutions

Figure 6. Signs of grazing on the edges

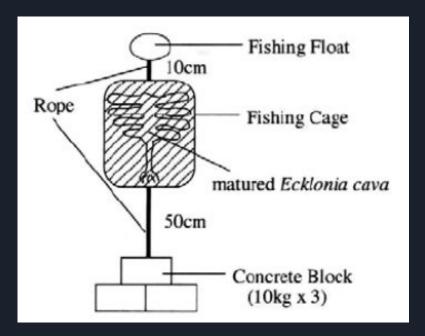


Figure 7. Diagram of the spore bag method

Current Solutions

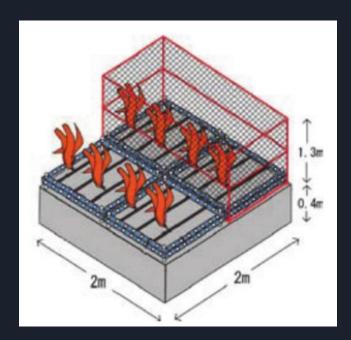


Figure 8. Diagram of the net cage methods

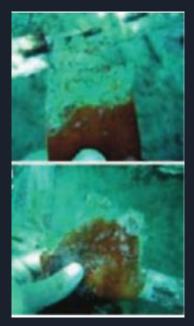


Figure 9. Bleaching and dissolving of the leaning edge of the blade

Current Solutions

Figure 10. Seedlings on an artificial reef

Purpose

 To determine the effects of rising ocean temperatures on E. cava

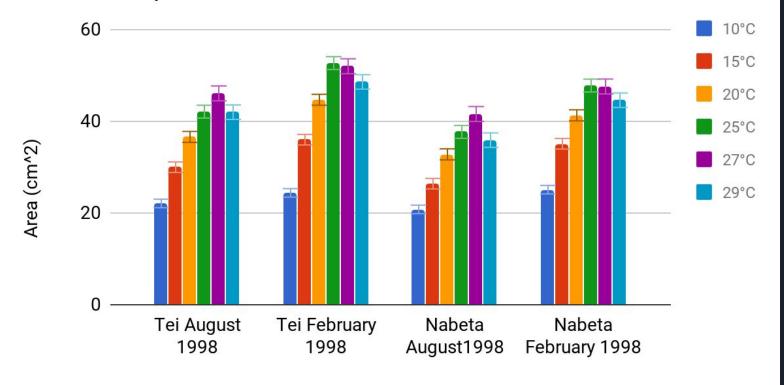
Research Question

Do rising ocean temperatures affect E. cava?

Hypothesis

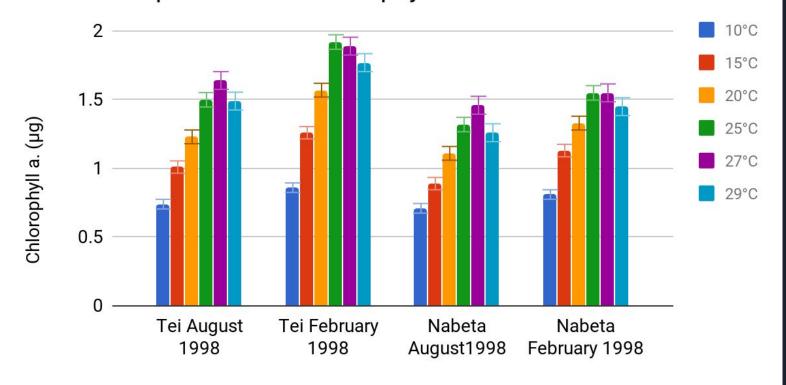
Alternative: Increasing ocean temperatures decrease the growth rate of *E. cava*.

Null: Temperature does not affect the growth rate of *E. cava*.

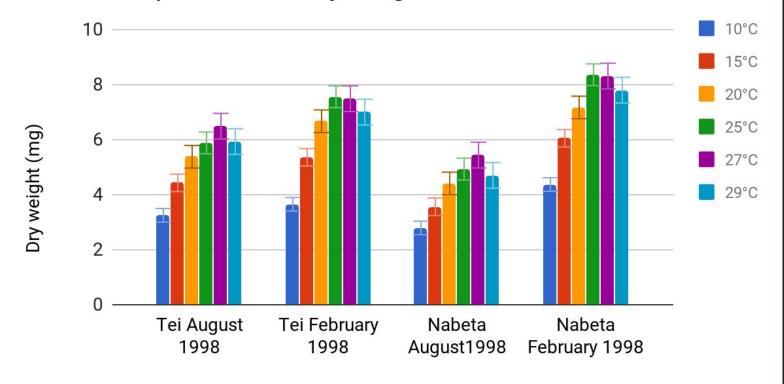

Methods

Methods

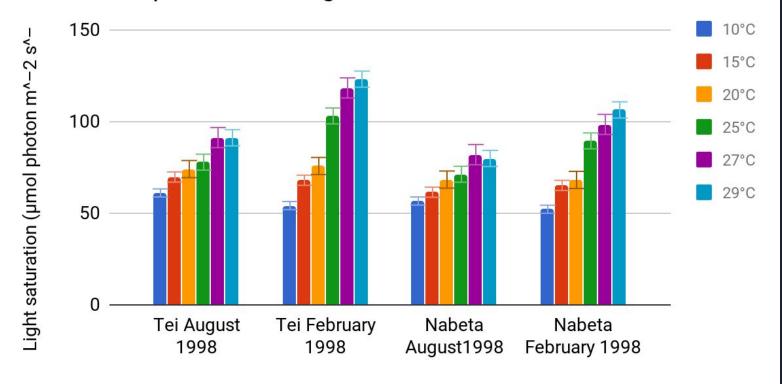
Method 1	Method 2	Method 3	Method 4	Method 5
Systematic Literature Review	Article Collection	Data Collection	Analyze Potential Applications	Publicize Findings


Results

Ocean Temperatures to Area at Different Locations


Location and Date

Ocean Temperatures to Chlorophyll a. at Different Locations


Location and Date

Ocean Temperatures to Dry Weight at Different Locations

Location and Date

Ocean Temperatures to Light Saturation at Different Locations

Location and Date

Discussion

Discussion

- Brings in herbivorous fish
- Seaweed growth affected by these factors
- Best solution is habitat change

Limitations

- Declined around 1980s
- Located around coasts of Japan and Korea
- Declined quantity of seaweed beds

Conclusion

- Rising temperatures can decline the population of Ecklonia Cava
- Potential solutions would be moving the habitat
- More research on potential solutions
- Potential health benefits

Application to the real world

- Permanent solutions could help many species
- Health benefits apply to many people

Acknowledgements

- Dr. Malhotra
- Dr. Henckels
- Dr. Htway
- Michelle Magnusson
- Emily Htway

References

- Serisawa, Y., Yokohama, Y., Aruga, Y., & Tanaka, J. (2001). Photosynthesis and respiration in bladelets of Ecklonia cava Kjellman (Laminariales, Phaeophyta) in two localities with different temperature conditions.

 Phycological Research, 49(1), 1-11. doi:10.1046/j.1440-1835.2001.00214.x
- Takano, Y., & Horiguchi, T. (2004). Dark respiration of the stipe of Ecklonia cava (Laminariales, Phaeophyta) in relation to temperature. Phycological Research, 52(2), 174-179. doi:10.1111/j.1440-183.2004.00340.x
- Takao, S & Kumagai, Naoki & Yamano, Hiroya & Fujii, Masahiko & Yamanaka, Yasuhiro. (2015). Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios. Ecology and Evolution. 5. 213-223, 10.1002/ece3.1358.
- Tanaka, Kouki & Taino, Seiya & Haraguchi, Hiroko & Prendergast, Gabrielle & Hiraoka, Masanori. (2012). Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecology and evolution. 2. 2854-65. 10.1002/ece3.391.
- Wijesekara I, Yoon NY, Kim SK. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors. 2010 Nov-Dec;36(6):408-14. doi: 10.1002/biof.114. Epub 2010 Aug 27.

 Review.
- Yong, Y.S., Yong, W.T.L. & Anton, A. J Appl Phycol (2013) 25: 1831. Analysis of formulae for determination of seaweed growth rate https://doi.org/10.1007/s10811-013-0022-7
- Yotsukura, N., Nagai, K., Tanaka, T., Kimura, H., & Morimoto, K. (2012). Temperature stress-induced changes in the proteomic profiles of Ecklonia cava (Laminariales, Phaeophyceae). *Journal Of Applied Phycology*, 24(2), 163-171. doi:10.1007/s10811-011-9664-5

The Effects of Ocean Temperature on Ecklonia Cava Growth and Its Implications

Thousand Oaks High School

AP Research STEM