Investigating the Efficacy and Safety of Silver Nanoparticles in Treating Oral Bacterial Biofilms

Benjamin P. Harman
Introduction

- 47% experience periodontal disease, 70% over 65
- High sugar diets and an aging population
- Bacterial biofilms
- Novel methods for treatment (Silver nanoparticles)

Figure 1: Presence of bacterial biofilms on the teeth surface (European Federation of Periodontology, 2016)
Periodontal Disease

- Tooth and gum decay from bacterial biofilms
- *Streptococcus mutans* and *candida albicans*
- Progresses over time
- More cases per year

Figure 2: Healthy tooth vs. tooth with periodontal disease
Candida albicans

- Fungal bacteria
- Harbored on skin and mucous membranes
- Feeds on food in mouth

Figure 3: C. albicans as seen by a microscope

Figure 4: C. albicans accumulation on the tongue
Streptococcus mutans

- Spherical (coccus) bacterium
- Uses sucrose to build capsule
- Sticks tightly to tooth
- Cause of cavities

Figure 5: S. mutans at the microscopic level showing coccus structure (Encyclopedia Britannica)
Aging Population

- Total fertility rate of 1.84 in 2015
- Replacement level is 2.1
- Maturing population
- Periodontal disease more common among older adults

Figure 6: Maturing population of the United States (Census Bureau, 2016)
Figure 7: Instances of periodontal disease across age group subsets (CDC, 2010)
Chlorhexidine Solution

- Most common current treatment
- Common disinfectant
- Biguanide compound
- Positive charge attaches to cell membrane leading to organelle leakage

Figure 8: Molecular structure of chlorhexidine solution (NIH, 2018)
Search for More Effective Treatment

- Increased rate of periodontal disease
- Greater medical cost
- Research into new methods of killing and inhibiting the bacteria

Figure 9: Chlorhexidine solution being injected into gums (Indian Society of Periodontology, 2013)
Silver in Medicine

- Used for over 6,000 years
- Symbol of health and prosperity
- Colloidal silver in 19th century
- Silver in preventing microbial infections (bandaging, equipment)

Figure 10: Early use of silver for food storage (Indian Express, 2017)
Silver Nanoparticles

- Found effective against many oral bacteria
- Tested *in vitro*
- Varying sizes
- Incorporated into larger applications (dentures)

Figure 10: Silver nanoparticles seen at different magnitudes using transmission electron microscopy (Oldenburg, 2010)
Controversy

- Concern whether harmful to mouth
- Study showed toxicity to human and rat embryonic neural stem cells (Lui et al., 2015)
- Cells unable to reproduce; died
Purpose

Determine whether silver nanoparticles are an effective method of treating *S. mutans* and *C. albicans* bacterial biofilms while avoiding causing harm to human cells over time.
Research Question

Are silver nanoparticles an effective and safe method of treatment for *S. mutans* and *C. albicans* biofilms over time?
Hypothesis

Silver nanoparticles can provide effective treatment of *C. albicans* and *S. mutans* biofilms while causing negligible damage to human cells.

Null

Silver nanoparticles cannot provide effective treatment of *C. albicans* and *S. mutans* biofilms while causing negligible damage to human cells.
Methods

- Systematic literature review from data sources 2005-present
- Information collected on oral and dental applications of silver nanoparticles, toxicity experiments, bactericidal testing against oral bacteria, reports of issues with usage
- Focused summary of findings
Sources and Keywords

- Online databases: EBSCOhost, Google Scholar, Public Library of Science, ScienceDirect
- Keywords for article searches included: silver nanoparticles, efficacy, safety, applications, toxicity, human, *S. mutans*, *C. albicans*, biofilms, denture, denture base liner, and chlorhexidine
Results

Figure 11: In vitro testing of silver nanoparticles against *C. albicans*. Evaluated by silver nanoparticle concentration (*p*=0.000122).
Results

Figure 11: Clinical testing of silver nanoparticles in tissue conditioner against *S. mutans*. Evaluated by mass percentage and duration of use.
Results

Figure 11: Clinical testing of silver nanoparticles in tissue conditioner against *C. albicans*. Evaluated by mass percentage and duration of use.
Results

- In all clinical testing, no noticeable damage was caused to participants
- Up to seven weeks, issues were checked for
Sources of Error

- Fewer sources were evaluated than could be in a meta-analysis
- Clinical testing influenced by outside factors
Sources of Error

● Fewer sources were evaluated than could be in a meta-analysis
● Clinical testing influenced by outside factors
Discussion

- Exhibit increased efficacy with increased concentration
- Effectively kill *S. mutans* and *C. albicans*
- Clinical and *in vitro* tests similar
Discussion

● Silver nanoparticle-infused denture more effective against *S. mutans*
● Denture did no harm to patients across studies
● Concentrations similar at 24 and 72 hrs
● Efficacy maintained

Figure 11: Upper and lower denture, upper infused with silver nanoparticles (Abdallah et al., 2015)
Conclusion

- Silver nanoparticles are effective
- Efficacy doesn’t decline over time
- Safe when infused into dentures and presumably other appliances
Further Work

- Extended time experimentation in mouth
- Comparison to other nanomaterials
- Clinical testing of silver nanoparticles applied alone and not part of an appliance
Acknowledgements

A special thank you to Dr. Kishore Ginjupalli at Manipal University, Dr. Nikki Malhotra, Ms. Michelle Magnusson, and Ms. Bronte Brazier for their aid and encouragement throughout the research process.
References Continued

Besinis, A., De Peralta, T., & Handy, R. D. (2014). The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of biosaays. *Nanotoxicology*, 8(1), 1-16
References

Investigating the Efficacy and Safety of Silver Nanoparticles in Treating Oral Bacterial Biofilms

Benjamin P. Harman