of DVT through the identification of P-selectin is absent. The focus is on designing a hybrid nanoparticle system with the addition of a multifunctional nanoparticle system to eliminate blood flow to the heart artery. (Disease and Conditions, 2018)

Figure 1. Illustration of a thrombus formation within the major arteries of the heart.

Increased risk of hemorrhage occurrence, the escape of anticoagulant therapy, inferior vena cava filter, or exercise, and applying mechanical compression. Other treatments can also occur in other places in the body as well as in the lower leg, thigh, and pelvis, although thrombosis can be undetected. Typically, 10% to 30% of patients will die within the first month of diagnosis.

This study is an evaluation of whether sPsel can be a valid biomarker for acute thrombosis formation. Due to toxicity and inaccuracy, PPACK nanoparticles can be added to the nanoparticles cores as a way to enhance the efficiency of thrombin removal as well as sPsel be used as a clinical marker, D-dimer. Differences in pre and post biomarker accuracy. Unit conversions were applied to all studies.

Null: due to toxicity and inaccuracy, PPACK nanoparticles cannot be used as a valid biomarker for acute thrombosis formation. Hypothesis: PPACK nanoparticles can test for cellular injury responses.

Evaluation of whether sPsel can be a valid biomarker for determining thrombus formation. Differences in pre and post biomarker accuracy. Unit conversions were applied to all studies. A few sources used to retrieve information regarding this topic that were capable of reaching were Ebscohost, biotherapy, and pharmacology.

Methods

The research design was conducted via secondary data analysis. A t-test using two tail distribution with p < 0.05 was performed. Data were reviewed and various biomarkers were studied to understand the effectiveness.

Table 2a. Soluble P-selectin being used as a biomarker for determining thrombus formation.

<table>
<thead>
<tr>
<th>Study Analyzed</th>
<th>p Value</th>
<th>p Value</th>
<th>DVT</th>
<th>p Value</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hameed et al. (2017)</td>
<td>0.02</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ay et al. (2007)</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jungblut et al. (2007)</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angelini et al. (2014)</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gremmel et al. (2011)</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

Nanotechnology offers a promising solution as it has the capability of generating pro-inflammation and may induce respiratory pathology. More research should look into the risk surfaces to early thrombi formation. Compared to all previous biomarkers, sPsel has a great advantage rather than their free roam state on thrombin surfaces to early thrombi formation.